A Label Correction Algorithm Using Prior Information for Automatic and Accurate Geospatial Object Recognition

Weiwei Duan, Yao Yi Chiang, Stefan Leyk, Johannes H. Uhl, Craig A. Knoblock

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Thousands of scanned historical topographic maps contain valuable information covering long periods of time, such as how the hydrography of a region has changed over time. Efficiently unlocking the information in these maps requires training a geospatial objects recognition system, which needs a large amount of annotated data. Overlapping geo-referenced external vector data with topographic maps according to their coordinates can annotate the desired objects' locations in the maps automatically. However, directly overlapping the two datasets causes misaligned and false annotations because the publication years and coordinate projection systems of topographic maps are different from the external vector data. We propose a label correction algorithm, which leverages the color information of maps and the prior shape information of the external vector data to reduce misaligned and false annotations. The experiments show that the precision of annotations from the proposed algorithm is 10% higher than the annotations from a state-of-the-art algorithm. Consequently, recognition results using the proposed algorithm's annotations achieve 9% higher correctness than using the annotations from the state-of-the-art algorithm.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE International Conference on Big Data, Big Data 2021
EditorsYixin Chen, Heiko Ludwig, Yicheng Tu, Usama Fayyad, Xingquan Zhu, Xiaohua Tony Hu, Suren Byna, Xiong Liu, Jianping Zhang, Shirui Pan, Vagelis Papalexakis, Jianwu Wang, Alfredo Cuzzocrea, Carlos Ordonez
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1604-1610
Number of pages7
ISBN (Electronic)9781665439022
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Big Data, Big Data 2021 - Virtual, Online, United States
Duration: Dec 15 2021Dec 18 2021

Publication series

NameProceedings - 2021 IEEE International Conference on Big Data, Big Data 2021

Conference

Conference2021 IEEE International Conference on Big Data, Big Data 2021
Country/TerritoryUnited States
CityVirtual, Online
Period12/15/2112/18/21

Bibliographical note

Funding Information:
This material is based upon work supported in part by the National Science Foundation under Grant Nos. IIS 1564164 (to the University of Southern California) and IIS 1563933 (to the University of Colorado at Boulder), NVIDIA Corporation, the National Endowment for the Humanities under Award No. HC-278125-21, and the University of Minnesota, Computer Science & Engineering Faculty startup funds.

Publisher Copyright:
© 2021 IEEE.

Fingerprint

Dive into the research topics of 'A Label Correction Algorithm Using Prior Information for Automatic and Accurate Geospatial Object Recognition'. Together they form a unique fingerprint.

Cite this