A kinetic model of membrane formation by CVD of SiO2 and Al2O3

Michael Tsapatsis, George R. Gavalas

Research output: Contribution to journalArticlepeer-review

67 Scopus citations

Abstract

Silica and alumina layers deposited onto the walls of porous Vycor tubes by chloride hydrolysis in an opposing reactants geometry have been characterized by scanning electron microscopy and electron microprobe analysis. The layers are asymmetric, having a long tail toward the side of the chloride flow and a sharp boundary at the other side. The deposit thickness is several tenths of microns, while the totally plugged region is of order of 1 micron. A model has been developed describing reaction, diffusion and evolution of the porous structure in the Vycor substrate due to the accumulation of the solid product. The deposition reaction is described by transient kinetics in terms if the concentrations of silanol and chloride groups in the product layer, as well as the concentrations of the gaseous reactants. The model is capable of generating deposit profiles in good agreement with those measured by electron microprobe analysis.

Original languageEnglish (US)
Pages (from-to)847-856
Number of pages10
JournalAIChE Journal
Volume38
Issue number6
DOIs
StatePublished - Jun 1992

Fingerprint

Dive into the research topics of 'A kinetic model of membrane formation by CVD of SiO2 and Al2O3'. Together they form a unique fingerprint.

Cite this