TY - GEN
T1 - A hybrid estimation framework for cooperative localization under communication constraints
AU - Nerurkar, Esha D.
AU - Zhou, Ke X.
AU - Roumeliotis, Stergios I.
PY - 2011/12/29
Y1 - 2011/12/29
N2 - In this paper, we consider the problem of multi-centralized Cooperative Localization (CL) under severe communication constraints, i.e., when each robot can communicate only a single bit per real-valued (analog) measurement. Existing approaches, such as those based on the Sign-of-Innovation Kalman filter (SOI-KF) and its variants, require each robot to process quantized versions of both its local (i.e., recorded by its own sensors) and remote (i.e., collected by other robots) measurements. This results in suboptimal performance since each robot has to discard information that is available in its own analog measurements. To address this limitation, we introduce a novel hybrid estimation scheme that enables each robot to process both quantized (from remote sensors) and analog (from its own sensors) measurements. Specifically, we first present the hybrid (H)-SOI-KF, a direct extension of the SOI-KF, for processing both types of measurements. Secondly, we introduce the modified (M)H-SOI-KF, that uses an asymmetric encoding/decoding scheme to incorporate additional information during quantization (based on the hybrid estimates locally available to each robot), resulting in substantial accuracy improvement. Lastly, we present extensive simulations which demonstrate that both hybrid estimators not only outperform the SOI-KF, but also achieve accuracy comparable to that of the standard (analog) centralized Kalman filter.
AB - In this paper, we consider the problem of multi-centralized Cooperative Localization (CL) under severe communication constraints, i.e., when each robot can communicate only a single bit per real-valued (analog) measurement. Existing approaches, such as those based on the Sign-of-Innovation Kalman filter (SOI-KF) and its variants, require each robot to process quantized versions of both its local (i.e., recorded by its own sensors) and remote (i.e., collected by other robots) measurements. This results in suboptimal performance since each robot has to discard information that is available in its own analog measurements. To address this limitation, we introduce a novel hybrid estimation scheme that enables each robot to process both quantized (from remote sensors) and analog (from its own sensors) measurements. Specifically, we first present the hybrid (H)-SOI-KF, a direct extension of the SOI-KF, for processing both types of measurements. Secondly, we introduce the modified (M)H-SOI-KF, that uses an asymmetric encoding/decoding scheme to incorporate additional information during quantization (based on the hybrid estimates locally available to each robot), resulting in substantial accuracy improvement. Lastly, we present extensive simulations which demonstrate that both hybrid estimators not only outperform the SOI-KF, but also achieve accuracy comparable to that of the standard (analog) centralized Kalman filter.
UR - http://www.scopus.com/inward/record.url?scp=84455206098&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84455206098&partnerID=8YFLogxK
U2 - 10.1109/IROS.2011.6048871
DO - 10.1109/IROS.2011.6048871
M3 - Conference contribution
AN - SCOPUS:84455206098
SN - 9781612844541
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 502
EP - 509
BT - IROS'11 - 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
T2 - 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems: Celebrating 50 Years of Robotics, IROS'11
Y2 - 25 September 2011 through 30 September 2011
ER -