Abstract
We prove a higher chromatic analogue of Snaith’s theorem which identifies the K –theory spectrum as the localisation of the suspension spectrum of CP1 away from the Bott class; in this result, higher Eilenberg–MacLane spaces play the role of CP1 D K.Z; 2/. Using this, we obtain a partial computation of the part of the Picard-graded homotopy of the K.n/–local sphere indexed by powers of a spectrum which for large primes is a shift of the Gross–Hopkins dual of the sphere. Our main technical tool is a K.n/–local notion generalising complex orientation to higher Eilenberg–MacLane spaces. As for complex-oriented theories, such an orientation produces a one-dimensional formal group law as an invariant of the cohomology theory. As an application, we prove a theorem that gives evidence for the chromatic redshift conjecture.
Original language | English (US) |
---|---|
Pages (from-to) | 1033-1093 |
Number of pages | 61 |
Journal | Geometry and Topology |
Volume | 21 |
Issue number | 2 |
DOIs | |
State | Published - Mar 17 2017 |
Bibliographical note
Publisher Copyright:© 2017, Mathematical Sciences Publishers. All rights reserved.
Keywords
- Chromatic homotopy theory
- Picard group
- Redshift conjecture
- Snaith theorem