A high-throughput workflow to study remodeling of extracellular matrix-based microtissues

Katherine A. Cummins, Alexandra L. Crampton, David K Wood

Research output: Contribution to journalArticle

Abstract

Changes to the cellular microenvironment are an integral characteristic of numerous pathologies, including cancer, fibrosis, and autoimmune disease. Current in vitro methodologies available to study three-dimensional tissue remodeling are ill-suited for high-throughput studies as they are not scalable for large-scale experiments. Combining droplet microfluidics and patterned low-adhesion culture surfaces, we have engineered a workflow to incorporate cell-extracellular matrix (ECM) interactions in a versatile and high-throughput platform that is compatible with existing high-throughput liquid handling systems, enables long-term experiments (>1 month), and is well suited for traditional and novel biological measurements. With our platform, we demonstrate the feasibility of high-throughput ECM remodeling studies with collagen microtissues as one application of a tissue-level function. In this study, we use our workflow to examine ECM remodeling at the tissue, cell, and subcellular levels, leveraging assays ranging from immunohistochemistry and live cell imaging, to proliferation and contraction assays. With our unique culture system, we can track individual constructs over time and evaluate remodeling on several scales for large populations. Finally, we demonstrate the ability to cryopreserve our microtissues while retaining high viability and cell function, an invaluable method that could allow for dissemination and freezing of microtissues after mass production. Using these methods, our ECM-based system becomes a viable platform for modeling diseases characterized by tissue reorganization as well as a scalable method to conduct in vitro cell-based assays for drug screening and high-throughput biological discovery. The described microtissue-microwell workflow is uniquely suited for high-throughput study of extracellular matrix (ECM) remodeling at the molecular, cellular, and tissue levels and demonstrates possibilities of studying progressive, heterogeneous diseases in a way that is meaningful for drug discovery and development. We outline several assays that can be utilized in studying tissue-level diseases and functions that involve cell-ECM interactions and ECM remodeling (e.g., cancer, fibrosis, wound healing) in pursuit of an improved three-dimensional cell culturing system. Finally, we demonstrate the ability to cryopreserve cells encapsulated in microtissue constructs while remaining highly viable, proliferative, and retaining cell functions that are involved in ECM remodeling.

Original languageEnglish (US)
Pages (from-to)25-36
Number of pages12
JournalTissue Engineering - Part C: Methods
Volume25
Issue number1
DOIs
StatePublished - Jan 1 2019

Fingerprint

Workflow
Extracellular Matrix
Throughput
Tissue
Assays
Fibrosis
High-Throughput Screening Assays
Cellular Microenvironment
Preclinical Drug Evaluations
Microfluidics
Pathology
Drug Discovery
Collagen
Freezing
Wound Healing
Autoimmune Diseases
Neoplasms
Cell Survival
Screening
Adhesion

Keywords

  • 3D cell culture
  • ECM remodeling
  • droplets
  • high-throughput screening
  • microfluidics
  • microtissues

Cite this

A high-throughput workflow to study remodeling of extracellular matrix-based microtissues. / Cummins, Katherine A.; Crampton, Alexandra L.; Wood, David K.

In: Tissue Engineering - Part C: Methods, Vol. 25, No. 1, 01.01.2019, p. 25-36.

Research output: Contribution to journalArticle

@article{0cead54923434581864d613c384a2e1d,
title = "A high-throughput workflow to study remodeling of extracellular matrix-based microtissues",
abstract = "Changes to the cellular microenvironment are an integral characteristic of numerous pathologies, including cancer, fibrosis, and autoimmune disease. Current in vitro methodologies available to study three-dimensional tissue remodeling are ill-suited for high-throughput studies as they are not scalable for large-scale experiments. Combining droplet microfluidics and patterned low-adhesion culture surfaces, we have engineered a workflow to incorporate cell-extracellular matrix (ECM) interactions in a versatile and high-throughput platform that is compatible with existing high-throughput liquid handling systems, enables long-term experiments (>1 month), and is well suited for traditional and novel biological measurements. With our platform, we demonstrate the feasibility of high-throughput ECM remodeling studies with collagen microtissues as one application of a tissue-level function. In this study, we use our workflow to examine ECM remodeling at the tissue, cell, and subcellular levels, leveraging assays ranging from immunohistochemistry and live cell imaging, to proliferation and contraction assays. With our unique culture system, we can track individual constructs over time and evaluate remodeling on several scales for large populations. Finally, we demonstrate the ability to cryopreserve our microtissues while retaining high viability and cell function, an invaluable method that could allow for dissemination and freezing of microtissues after mass production. Using these methods, our ECM-based system becomes a viable platform for modeling diseases characterized by tissue reorganization as well as a scalable method to conduct in vitro cell-based assays for drug screening and high-throughput biological discovery. The described microtissue-microwell workflow is uniquely suited for high-throughput study of extracellular matrix (ECM) remodeling at the molecular, cellular, and tissue levels and demonstrates possibilities of studying progressive, heterogeneous diseases in a way that is meaningful for drug discovery and development. We outline several assays that can be utilized in studying tissue-level diseases and functions that involve cell-ECM interactions and ECM remodeling (e.g., cancer, fibrosis, wound healing) in pursuit of an improved three-dimensional cell culturing system. Finally, we demonstrate the ability to cryopreserve cells encapsulated in microtissue constructs while remaining highly viable, proliferative, and retaining cell functions that are involved in ECM remodeling.",
keywords = "3D cell culture, ECM remodeling, droplets, high-throughput screening, microfluidics, microtissues",
author = "Cummins, {Katherine A.} and Crampton, {Alexandra L.} and Wood, {David K}",
year = "2019",
month = "1",
day = "1",
doi = "10.1089/ten.tec.2018.0290",
language = "English (US)",
volume = "25",
pages = "25--36",
journal = "Tissue Engineering - Part C: Methods",
issn = "1937-3384",
publisher = "Mary Ann Liebert Inc.",
number = "1",

}

TY - JOUR

T1 - A high-throughput workflow to study remodeling of extracellular matrix-based microtissues

AU - Cummins, Katherine A.

AU - Crampton, Alexandra L.

AU - Wood, David K

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Changes to the cellular microenvironment are an integral characteristic of numerous pathologies, including cancer, fibrosis, and autoimmune disease. Current in vitro methodologies available to study three-dimensional tissue remodeling are ill-suited for high-throughput studies as they are not scalable for large-scale experiments. Combining droplet microfluidics and patterned low-adhesion culture surfaces, we have engineered a workflow to incorporate cell-extracellular matrix (ECM) interactions in a versatile and high-throughput platform that is compatible with existing high-throughput liquid handling systems, enables long-term experiments (>1 month), and is well suited for traditional and novel biological measurements. With our platform, we demonstrate the feasibility of high-throughput ECM remodeling studies with collagen microtissues as one application of a tissue-level function. In this study, we use our workflow to examine ECM remodeling at the tissue, cell, and subcellular levels, leveraging assays ranging from immunohistochemistry and live cell imaging, to proliferation and contraction assays. With our unique culture system, we can track individual constructs over time and evaluate remodeling on several scales for large populations. Finally, we demonstrate the ability to cryopreserve our microtissues while retaining high viability and cell function, an invaluable method that could allow for dissemination and freezing of microtissues after mass production. Using these methods, our ECM-based system becomes a viable platform for modeling diseases characterized by tissue reorganization as well as a scalable method to conduct in vitro cell-based assays for drug screening and high-throughput biological discovery. The described microtissue-microwell workflow is uniquely suited for high-throughput study of extracellular matrix (ECM) remodeling at the molecular, cellular, and tissue levels and demonstrates possibilities of studying progressive, heterogeneous diseases in a way that is meaningful for drug discovery and development. We outline several assays that can be utilized in studying tissue-level diseases and functions that involve cell-ECM interactions and ECM remodeling (e.g., cancer, fibrosis, wound healing) in pursuit of an improved three-dimensional cell culturing system. Finally, we demonstrate the ability to cryopreserve cells encapsulated in microtissue constructs while remaining highly viable, proliferative, and retaining cell functions that are involved in ECM remodeling.

AB - Changes to the cellular microenvironment are an integral characteristic of numerous pathologies, including cancer, fibrosis, and autoimmune disease. Current in vitro methodologies available to study three-dimensional tissue remodeling are ill-suited for high-throughput studies as they are not scalable for large-scale experiments. Combining droplet microfluidics and patterned low-adhesion culture surfaces, we have engineered a workflow to incorporate cell-extracellular matrix (ECM) interactions in a versatile and high-throughput platform that is compatible with existing high-throughput liquid handling systems, enables long-term experiments (>1 month), and is well suited for traditional and novel biological measurements. With our platform, we demonstrate the feasibility of high-throughput ECM remodeling studies with collagen microtissues as one application of a tissue-level function. In this study, we use our workflow to examine ECM remodeling at the tissue, cell, and subcellular levels, leveraging assays ranging from immunohistochemistry and live cell imaging, to proliferation and contraction assays. With our unique culture system, we can track individual constructs over time and evaluate remodeling on several scales for large populations. Finally, we demonstrate the ability to cryopreserve our microtissues while retaining high viability and cell function, an invaluable method that could allow for dissemination and freezing of microtissues after mass production. Using these methods, our ECM-based system becomes a viable platform for modeling diseases characterized by tissue reorganization as well as a scalable method to conduct in vitro cell-based assays for drug screening and high-throughput biological discovery. The described microtissue-microwell workflow is uniquely suited for high-throughput study of extracellular matrix (ECM) remodeling at the molecular, cellular, and tissue levels and demonstrates possibilities of studying progressive, heterogeneous diseases in a way that is meaningful for drug discovery and development. We outline several assays that can be utilized in studying tissue-level diseases and functions that involve cell-ECM interactions and ECM remodeling (e.g., cancer, fibrosis, wound healing) in pursuit of an improved three-dimensional cell culturing system. Finally, we demonstrate the ability to cryopreserve cells encapsulated in microtissue constructs while remaining highly viable, proliferative, and retaining cell functions that are involved in ECM remodeling.

KW - 3D cell culture

KW - ECM remodeling

KW - droplets

KW - high-throughput screening

KW - microfluidics

KW - microtissues

UR - http://www.scopus.com/inward/record.url?scp=85060160457&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85060160457&partnerID=8YFLogxK

U2 - 10.1089/ten.tec.2018.0290

DO - 10.1089/ten.tec.2018.0290

M3 - Article

VL - 25

SP - 25

EP - 36

JO - Tissue Engineering - Part C: Methods

JF - Tissue Engineering - Part C: Methods

SN - 1937-3384

IS - 1

ER -