Abstract
In this paper, we present a virtual oscillator control (VOC) strategy for power inverters to operate in either grid-connected or islanded settings. The proposed controller is based on the dynamics of the nonlinear Andronov-Hopf oscillator and it provides voltage regulation, frequency support in islanded mode. It also features the potential to respond to real- and reactive-power setpoints for dispatchability in grid-connected mode. In contrast to early VOC incarnations which exhibit undesirable harmonics, the proposed controller offers a sinusoidal ac limit cycle as well as improved dynamic performance. Moreover, the proposed controller intrinsically generates orthogonal signals which facilitate implementation in three-phase systems. We study the controller dynamical model and outline a systematic design procedure such that the inverter satisfies standard ac performance specifications. Numerical simulations validate the analytical developments.
Original language | English (US) |
---|---|
Title of host publication | 2019 IEEE Energy Conversion Congress and Exposition, ECCE 2019 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 2643-2649 |
Number of pages | 7 |
ISBN (Electronic) | 9781728103952 |
DOIs | |
State | Published - Sep 2019 |
Event | 11th Annual IEEE Energy Conversion Congress and Exposition, ECCE 2019 - Baltimore, United States Duration: Sep 29 2019 → Oct 3 2019 |
Publication series
Name | 2019 IEEE Energy Conversion Congress and Exposition, ECCE 2019 |
---|
Conference
Conference | 11th Annual IEEE Energy Conversion Congress and Exposition, ECCE 2019 |
---|---|
Country/Territory | United States |
City | Baltimore |
Period | 9/29/19 → 10/3/19 |
Bibliographical note
Publisher Copyright:© 2019 IEEE.