A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations

Julia A. Schnabel, Daniel Rueckert, Marcel Quist, Jane M. Blackall, Andy D. Castellano-Smith, Thomas Hartkens, Graeme P. Penney, Walter A. Hall, Haiying Liu, Chip Truwit, Frans A. Gerritsen, Derek L.G. Hill, David J. Hawkes

Research output: Chapter in Book/Report/Conference proceedingConference contribution

269 Scopus citations

Abstract

This work presents a framework for non-rigid registration which extends and generalizes a previously developed technique by Rueckert et al. [1]. We combine multi-resolution optimization with free-form deformations (FFDs) based on multi-level B-splines to simulate a non-uniform control point distribution. We have applied this to a number of different medical registration tasks to demonstrate its wide applicability, including interventional MRI brain tissue deformation compensation, breathing motion compensation in liver MRI, intramodality inter-modality registration of pre-operative brain MRI to CT electrode implant data, and inter-subject registration of brain MRI. Our results demonstrate that the new algorithm can successfully register images with an improved performance, while achieving a significant reduction in run-time.

Original languageEnglish (US)
Title of host publicationMedical Image Computing and Computer-Assisted Intervention - MICCAI 2001 - 4th International Conference, Proceedings
EditorsWiro J. Niessen, Max A. Viergever
PublisherSpringer Verlag
Pages573-581
Number of pages9
ISBN (Print)3540426973, 9783540454687
DOIs
StatePublished - 2001
Event4th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2001 - Utrecht, Netherlands
Duration: Oct 14 2001Oct 17 2001

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume2208
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other4th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2001
CountryNetherlands
CityUtrecht
Period10/14/0110/17/01

Fingerprint Dive into the research topics of 'A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations'. Together they form a unique fingerprint.

  • Cite this

    Schnabel, J. A., Rueckert, D., Quist, M., Blackall, J. M., Castellano-Smith, A. D., Hartkens, T., Penney, G. P., Hall, W. A., Liu, H., Truwit, C., Gerritsen, F. A., Hill, D. L. G., & Hawkes, D. J. (2001). A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations. In W. J. Niessen, & M. A. Viergever (Eds.), Medical Image Computing and Computer-Assisted Intervention - MICCAI 2001 - 4th International Conference, Proceedings (pp. 573-581). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 2208). Springer Verlag. https://doi.org/10.1007/3-540-45468-3_69