A Gauss-Kronrod-Trapezoidal integration scheme for modeling biological tissues with continuous fiber distributions

Chieh Hou, Gerard A. Ateshian

Research output: Contribution to journalArticle

2 Scopus citations

Abstract

Fibrous biological tissues may be modeled using a continuous fiber distribution (CFD) to capture tension–compression nonlinearity, anisotropic fiber distributions, and load-induced anisotropy. The CFD framework requires spherical integration of weighted individual fiber responses, with fibers contributing to the stress response only when they are in tension. The common method for performing this integration employs the discretization of the unit sphere into a polyhedron with nearly uniform triangular faces (finite element integration or FEI scheme). Although FEI has proven to be more accurate and efficient than integration using spherical coordinates, it presents three major drawbacks: First, the number of elements on the unit sphere needed to achieve satisfactory accuracy becomes a significant computational cost in a finite element (FE) analysis. Second, fibers may not be in tension in some regions on the unit sphere, where the integration becomes a waste. Third, if tensed fiber bundles span a small region compared to the area of the elements on the sphere, a significant discretization error arises. This study presents an integration scheme specialized to the CFD framework, which significantly mitigates the first drawback of the FEI scheme, while eliminating the second and third completely. Here, integration is performed only over the regions of the unit sphere where fibers are in tension. Gauss–Kronrod quadrature is used across latitudes and the trapezoidal scheme across longitudes. Over a wide range of strain states, fiber material properties, and fiber angular distributions, results demonstrate that this new scheme always outperforms FEI, sometimes by orders of magnitude in the number of computational steps and relative accuracy of the stress calculation.

Original languageEnglish (US)
Pages (from-to)883-893
Number of pages11
JournalComputer methods in biomechanics and biomedical engineering
Volume19
Issue number8
DOIs
StatePublished - Jun 10 2016

Keywords

  • Soft tissue mechanics
  • fiber density distribution
  • fibrous tissues
  • finite element analysis
  • integration on the sphere

Fingerprint Dive into the research topics of 'A Gauss-Kronrod-Trapezoidal integration scheme for modeling biological tissues with continuous fiber distributions'. Together they form a unique fingerprint.

  • Cite this