Abstract
In this paper we analyze the electronic interactions that control both the binding and the adsorption of hydroxide at the water/copper metal interface under electrochemical conditions using first principle density functional theoretical calculations. The binding energy between the anion and the surface is defined herein as the chemical bond strength between the adsorbate and the metal surface in the absence of water or an applied potential. The adsorption energy for an anion to a metal surface, on the other hand, is typically defined in an electrochemical system as X-(aq) → Xads + e- where X here refers to the hydroxyl anion. The calculations carried out herein examine and test classic theories concerning the influence of electrode potential on the changes to the binding and adsorption of OH to Cu(1 1 1) surface. The hydroxide/water/Cu interface is chosen as a probe system and also due to the importance of its corrosion. The adsorption geometry of the hydroxyl intermediate is monitored over a range of applied potentials. When a positive surface charge density is applied, the hydroxyl interacts with a water molecule in the outer water layer to form an surface bound (OH)OH2 adduct. The formation of the adduct leads to an increase in the capacitance of the system due to the delocalization of positive charge across the first 'inner-layer' of the solution environment. The electronic structure is analyzed in detail to establish how the energy levels of the hydroxyl and oxygen species change relative to the electrode's d-band structure as an electrochemical potential is applied. The energy levels of the surface hydroxide species follow the changes in the potential of the electrode. The results indicate that the changes in the binding energy with potential are less than 0.1 eV/V over a range of potentials from -2 V to +2.5 V.
Original language | English (US) |
---|---|
Pages (from-to) | 167-174 |
Number of pages | 8 |
Journal | Journal of Electroanalytical Chemistry |
Volume | 607 |
Issue number | 1-2 |
DOIs | |
State | Published - Sep 1 2007 |
Externally published | Yes |
Bibliographical note
Funding Information:The authors gratefully acknowledge partial support from Army Research Office MURI grant (DAAD19-03-0169) and from Department of Energy – Basic Energy Sciences, Center for Synthesis and Processing on Localized Corrosion, K. Zavadil as well as helpful discussions with Dr. Michael Janik (Pennsylvania State University). CDT acknowledges the support of a Ballard Foundation fellowship for graduate studies at the University of Virginia.
Keywords
- Chemisorption
- Cu(1 1 1)
- DFT
- Density function theory
- Electrochemical
- Hydroxyl
- Potential dependent adsorption