A ferroelectric semiconductor field-effect transistor

Mengwei Si, Atanu K. Saha, Shengjie Gao, Gang Qiu, Jingkai Qin, Yuqin Duan, Jie Jian, Chang Niu, Haiyan Wang, Wenzhuo Wu, Sumeet K. Gupta, Peide D. Ye

Research output: Contribution to journalArticlepeer-review

317 Scopus citations

Abstract

Ferroelectric field-effect transistors employ a ferroelectric material as a gate insulator, the polarization state of which can be detected using the channel conductance of the device. As a result, the devices are potentially of use in non-volatile memory technology, but they suffer from short retention times, which limits their wider application. Here, we report a ferroelectric semiconductor field-effect transistor in which a two-dimensional ferroelectric semiconductor, indium selenide (α-In2Se3), is used as the channel material in the device. α-In2Se3 was chosen due to its appropriate bandgap, room-temperature ferroelectricity, ability to maintain ferroelectricity down to a few atomic layers and its potential for large-area growth. A passivation method based on the atomic layer deposition of aluminium oxide (Al2O3) was developed to protect and enhance the performance of the transistors. With 15-nm-thick hafnium oxide (HfO2) as a scaled gate dielectric, the resulting devices offer high performance with a large memory window, a high on/off ratio of over 108, a maximum on current of 862 μA μm−1 and a low supply voltage.

Original languageEnglish (US)
Pages (from-to)580-586
Number of pages7
JournalNature Electronics
Volume2
Issue number12
DOIs
StatePublished - Dec 1 2019
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2019, The Author(s), under exclusive licence to Springer Nature Limited.

Fingerprint

Dive into the research topics of 'A ferroelectric semiconductor field-effect transistor'. Together they form a unique fingerprint.

Cite this