A fast method for measuring psychophysical thresholds across the cochlear implant array

Julie A. Bierer, Steven M. Bierer, Heather A. Kreft, Andrew J. Oxenham

Research output: Contribution to journalArticle

13 Scopus citations

Abstract

A rapid threshold measurement procedure, based on Bekesy tracking, is proposed and evaluated for use with cochlear implants (CIs). Fifteen postlingually deafened adult CI users participated. Absolute thresholds for 200-ms trains of biphasic pulses were measured using the new tracking procedure and were compared with thresholds obtained with a traditional forced-choice adaptive procedure under both monopolar and quadrupolar stimulation. Virtual spectral sweeps across the electrode array were implemented in the tracking procedure via current steering, which divides the current between two adjacent electrodes and varies the proportion of current directed to each electrode. Overall, no systematic differences were found between threshold estimates with the new channel sweep procedure and estimates using the adaptive forced-choice procedure. Test-retest reliability for the thresholds from the sweep procedure was somewhat poorer than for thresholds from the forced-choice procedure. However, the new method was about 4 times faster for the same number of repetitions. Overall the reliability and speed of the new tracking procedure provides it with the potential to estimate thresholds in a clinical setting. Rapid methods for estimating thresholds could be of particular clinical importance in combination with focused stimulation techniques that result in larger threshold variations between electrodes.

Original languageEnglish (US)
JournalTrends in Hearing
Volume19
DOIs
StatePublished - Jan 1 2015

Keywords

  • Cochlear implant
  • Psychophysics
  • Threshold

Fingerprint Dive into the research topics of 'A fast method for measuring psychophysical thresholds across the cochlear implant array'. Together they form a unique fingerprint.

  • Cite this