TY - JOUR
T1 - A Dominant Negative Type I Insulin-like Growth Factor Receptor Inhibits Metastasis of Human Cancer Cells
AU - Sachdev, Deepali
AU - Hartell, Julie S.
AU - Lee, Adrian V.
AU - Zhang, Xihong
AU - Yee, Douglas
PY - 2004/2/6
Y1 - 2004/2/6
N2 - We have previously shown that LCC6 wild-type (WT) cells, a metastatic variant of MDA-MB-435 cancer cells originally derived from a breast cancer patient, exhibit enhanced motility in response to IGF-I compared with the parent MDA-MB-435 cells. To further understand the role of the type I insulin-like growth factor (IGF) receptor (IGF1R) in cancer metastasis we inhibited signaling via IGF1R using a C-terminal-truncated IGF1R. The truncated receptor retains the ligand binding domain but lacks the autophosphorylated tyrosine residues in the carboxyl terminus. Cells stably transfected with this truncated receptor (LCC6-DN cells) overexpressed the truncated IGF1R messenger RNA nearly 50-fold over endogenous receptor. The truncated receptor in the LCC6-DN cells behaved in a dominant negative manner to inhibit endogenous IGF1R activation by IGF-I. Compared with the LCC6-WT cells, LCC6-DN cells failed to phosphorylate the adaptor proteins insulin receptor substrate-1 and -2 in response to IGF-I and did not activate Akt after exposure to IGF-I. Unlike LCC6-WT cells, LCC6-DN cells did not show enhanced motility in response to IGF-I. To assay for metastasis, LCC6-WT and LCC6-DN cells were injected into the mammary fat pads of mice, and the primary xenograft tumors were removed after 21 days. Mice sacrificed 5 weeks later showed multiple lung metastases derived from LCC-WT xenografts, whereas mice harboring LCC6-DN xenografts showed no lung metastases. Our data show that IGF1R can regulate several aspects of the malignant phenotype. In these cells, metastasis but not proliferation requires IGF1R function.
AB - We have previously shown that LCC6 wild-type (WT) cells, a metastatic variant of MDA-MB-435 cancer cells originally derived from a breast cancer patient, exhibit enhanced motility in response to IGF-I compared with the parent MDA-MB-435 cells. To further understand the role of the type I insulin-like growth factor (IGF) receptor (IGF1R) in cancer metastasis we inhibited signaling via IGF1R using a C-terminal-truncated IGF1R. The truncated receptor retains the ligand binding domain but lacks the autophosphorylated tyrosine residues in the carboxyl terminus. Cells stably transfected with this truncated receptor (LCC6-DN cells) overexpressed the truncated IGF1R messenger RNA nearly 50-fold over endogenous receptor. The truncated receptor in the LCC6-DN cells behaved in a dominant negative manner to inhibit endogenous IGF1R activation by IGF-I. Compared with the LCC6-WT cells, LCC6-DN cells failed to phosphorylate the adaptor proteins insulin receptor substrate-1 and -2 in response to IGF-I and did not activate Akt after exposure to IGF-I. Unlike LCC6-WT cells, LCC6-DN cells did not show enhanced motility in response to IGF-I. To assay for metastasis, LCC6-WT and LCC6-DN cells were injected into the mammary fat pads of mice, and the primary xenograft tumors were removed after 21 days. Mice sacrificed 5 weeks later showed multiple lung metastases derived from LCC-WT xenografts, whereas mice harboring LCC6-DN xenografts showed no lung metastases. Our data show that IGF1R can regulate several aspects of the malignant phenotype. In these cells, metastasis but not proliferation requires IGF1R function.
UR - http://www.scopus.com/inward/record.url?scp=1042301373&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1042301373&partnerID=8YFLogxK
U2 - 10.1074/jbc.M305403200
DO - 10.1074/jbc.M305403200
M3 - Article
C2 - 14615489
AN - SCOPUS:1042301373
SN - 0021-9258
VL - 279
SP - 5017
EP - 5024
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 6
ER -