A deep neural network based SMAP soil moisture product

Lun Gao, Qiang Gao, Hankui Zhang, Xiaojun Li, Mario Julian Chaubell, Ardeshir Ebtehaj, Lian Shen, Jean Pierre Wigneron

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


In this paper, it is demonstrated that while satellite soil moisture (SM) retrievals often have minimum biases, reanalysis data can capture more temporal variability of SM, especially for non-cropland areas – when validated against in situ measurements. Accordingly, this paper presents a deep neural network (DNN) that utilizes the merits of a suite of existing satellite and reanalysis products to produce a new SM product with minimum (maximum) bias (correlation) – using NASA's Soil Moisture Active Passive (SMAP) data and ERA5 reanalysis. The benchmark of the network is a bias-adjusted SM with maximum correlation with in situ data over each land-cover type. The mean of the benchmark data is adjusted to the product that exhibits a minimum bias over each land-cover type. Consistent with the laws of L-band microwave propagation in soil and canopy, the input variables of DNN include polarized SMAP brightness temperatures, incidence angle, vegetation scattering albedo, surface roughness parameter, surface water fraction, effective soil temperatures, bulk density, clay fraction, and vegetation optical depth from the normalized difference vegetation index (NDVI) climatology. The DNN is trained and validated using two years (04/2015–03/2017) of global data and deployed for assessment of its performance from 04/2017 to 03/2021. The testing results against in situ measurements demonstrate that the DNN outputs typically exhibit improved error quality metrics over most land-cover types and climate regimes and can properly capture SM temporal dynamics, beyond each SMAP product across regional to continental scales.

Original languageEnglish (US)
Article number113059
JournalRemote Sensing of Environment
StatePublished - Aug 2022

Bibliographical note

Funding Information:
This research is conducted under the support of the Future Investigators in NASA Earth and Space Science and Technology ( 80NSSC19K1333 ) program and Interdisciplinary Science ( 80NSSC20K1294 ) program in Earth Science as well as the Theory of Remote Sensing program ( 80NSSC20K1717 ). L. Gao also gratefully acknowledges the support from the Heinz G. Stefan Fellowship and Doctoral Dissertation Fellowship from the University of Minnesota and appreciates early discussion with Dr. Jana Kolassa at NASA Goddard Space Flight Center .

Publisher Copyright:
© 2022 Elsevier Inc.


  • Deep neural networks
  • L-band radiometry
  • SMAP
  • Soil moisture


Dive into the research topics of 'A deep neural network based SMAP soil moisture product'. Together they form a unique fingerprint.

Cite this