A control oriented charge mixing and hcci combustion model for internal combustion engines

Shupeng Zhang, Guoming G. Zhu, Yongsoon Yoon, Zongxuan Sun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

This paper describes a control-oriented charge mixing and Homogeneous Charge Compression Ignition (HCCI) combustion model, where the in-cylinder charge is divided into the well-mixed and unmixed zones as the result of charge mixing. Simplified fluid dynamics is used to predict the residual gas fraction at the intake valve closing, which defines the size of the unmixed zone, during real-time simulations. The unmixed zone size not only determines how well the in-cylinder charge is mixed, which affects the start of HCCI combustion, the peak in-cylinder pressure and also the temperature during the combustion process. The developed model was validated in the HIL (hardware-in-the-loop) simulation environment. The HIL simulation results show that the proposed charge mixing and HCCI combustion model provides better agreement with these of the corresponding GT-Power than the previously developed one-zone model.

Original languageEnglish (US)
Title of host publicationASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012
Pages321-327
Number of pages7
DOIs
StatePublished - Dec 1 2012
EventASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012 - Fort Lauderdale, FL, United States
Duration: Oct 17 2012Oct 19 2012

Publication series

NameASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012
Volume2

Other

OtherASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012
CountryUnited States
CityFort Lauderdale, FL
Period10/17/1210/19/12

Fingerprint Dive into the research topics of 'A control oriented charge mixing and hcci combustion model for internal combustion engines'. Together they form a unique fingerprint.

Cite this