A constrained variational approach to the designing of low transport band gap materials: A multiobjective random mutation hill climbing method

Kanchan Sarkar, Rahul Sharma, S. P. Bhattacharyya

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Neutral polythiophene (PT) and polyselenophene (PSe) are semiconductors with band gaps of about 2 eV. We have proposed and implemented a constrained variational method in which total energy of neutral PT or PSe oligomers is minimized under the constraint that the band gap measured by HOMO-LUMO energy difference is also a minimum in each case. The constrained (bimodal) minimization has been carried out by an adaptive random mutation hill climbing method within the basic framework of Su-Schrieffer-Heeger type of model. We show that the "band-gap constrained minimization" automatically creates electron deficient quinoid regions (QR) in the PT or PSe chains, embedded in aromatic regions (ARs), on both sides. We have investigated how the number and distribution of such QRs can reduce the band gap. Band gap constrained electronic structure calculations thus provide designing clues for low transport band gap materials based on molecular chromophores.

Original languageEnglish (US)
Pages (from-to)1547-1558
Number of pages12
JournalInternational Journal of Quantum Chemistry
Volume112
Issue number6
DOIs
StatePublished - Mar 15 2012

Keywords

  • conducting polymers
  • constrained variational method
  • evolutionary computing
  • multiobjective optimization
  • random mutation hill climbing approach

Fingerprint Dive into the research topics of 'A constrained variational approach to the designing of low transport band gap materials: A multiobjective random mutation hill climbing method'. Together they form a unique fingerprint.

Cite this