TY - JOUR
T1 - A complex boundary integral method for multiple circular holes in an infinite plane
AU - Wang, Jianlin
AU - Crouch, Steven L
AU - Mogilevskaya, Sofia
PY - 2003/9/1
Y1 - 2003/9/1
N2 - A complex boundary integral equation method, combined with series expansion technique, is presented for the problem of an infinite, isotropic elastic plane containing multiple circular holes. Loading is applied at infinity or on the boundaries of the holes. The sizes and locations of the holes are arbitrary provided they do not overlap. The analysis procedure is based on the use of a complex hypersingular integral equation that expresses a direct relationship between all the boundary tractions and displacements. The unknown displacements on each circular boundary are represented by truncated complex Fourier series, and all of the integrals involved in the complex integral equation are evaluated analytically. A system of linear algebraic equations is obtained by using a Taylor series expansion, and the block Gauss-Seidel algorithm is used to solve the system. Several numerical examples are considered to demonstrate the accuracy, versatility, and efficiency of the approach.
AB - A complex boundary integral equation method, combined with series expansion technique, is presented for the problem of an infinite, isotropic elastic plane containing multiple circular holes. Loading is applied at infinity or on the boundaries of the holes. The sizes and locations of the holes are arbitrary provided they do not overlap. The analysis procedure is based on the use of a complex hypersingular integral equation that expresses a direct relationship between all the boundary tractions and displacements. The unknown displacements on each circular boundary are represented by truncated complex Fourier series, and all of the integrals involved in the complex integral equation are evaluated analytically. A system of linear algebraic equations is obtained by using a Taylor series expansion, and the block Gauss-Seidel algorithm is used to solve the system. Several numerical examples are considered to demonstrate the accuracy, versatility, and efficiency of the approach.
KW - Complex Fourier series
KW - Complex boundary integral equation method
KW - Complex hypersingular integral equation
KW - Galerkin method
KW - Multiple circular holes
KW - Taylor series expansion
UR - http://www.scopus.com/inward/record.url?scp=0042029360&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0042029360&partnerID=8YFLogxK
U2 - 10.1016/S0955-7997(03)00043-2
DO - 10.1016/S0955-7997(03)00043-2
M3 - Article
AN - SCOPUS:0042029360
VL - 27
SP - 789
EP - 802
JO - Engineering Analysis with Boundary Elements
JF - Engineering Analysis with Boundary Elements
SN - 0955-7997
IS - 8
ER -