A Class of Visual Neurons with Wide-Field Properties Is Required for Local Motion Detection

Yvette E. Fisher, Jonathan C.S. Leong, Katja Sporar, Madhura D. Ketkar, Daryl M. Gohl, Thomas R. Clandinin, Marion Silies

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

Visual motion cues are used by many animals to guide navigation across a wide range of environments. Long-standing theoretical models have made predictions about the computations that compare light signals across space and time to detect motion. Using connectomic and physiological approaches, candidate circuits that can implement various algorithmic steps have been proposed in the Drosophila visual system. These pathways connect photoreceptors, via interneurons in the lamina and the medulla, to direction-selective cells in the lobula and lobula plate. However, the functional architecture of these circuits remains incompletely understood. Here, we use a forward genetic approach to identify the medulla neuron Tm9 as critical for motion-evoked behavioral responses. Using in vivo calcium imaging combined with genetic silencing, we place Tm9 within motion-detecting circuitry. Tm9 receives functional inputs from the lamina neurons L3 and, unexpectedly, L1 and passes information onto the direction-selective T5 neuron. Whereas the morphology of Tm9 suggested that this cell would inform circuits about local points in space, we found that the Tm9 spatial receptive field is large. Thus, this circuit informs elementary motion detectors about a wide region of the visual scene. In addition, Tm9 exhibits sustained responses that provide a tonic signal about incoming light patterns. Silencing Tm9 dramatically reduces the response amplitude of T5 neurons under a broad range of different motion conditions. Thus, our data demonstrate that sustained and wide-field signals are essential for elementary motion processing.

Original languageEnglish (US)
Pages (from-to)3178-3189
Number of pages12
JournalCurrent Biology
Volume25
Issue number24
DOIs
StatePublished - Dec 21 2015

Bibliographical note

Funding Information:
We thank Christine Gündner for excellent technical support, André Fiala for generous access to a 2P microscope, Arezoo Pooresmaeili for comments on the manuscript, and the BDSC and Nirao Shah for fly stocks. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through an Emmy Noether grant and CRC 889—project C8 to M.S. and R01EY022638 to T.R.C. J.C.S.L. acknowledges Stanford MSTP, Stanford Bio-X, and Neuroadventures, and Y.E.F. acknowledges an NSF Fellowship.

Fingerprint Dive into the research topics of 'A Class of Visual Neurons with Wide-Field Properties Is Required for Local Motion Detection'. Together they form a unique fingerprint.

Cite this