TY - GEN
T1 - A CFD study on the effect of carbon particle seeding for the improvement of solar reactor performance
AU - Ozalp, Nesrin
AU - Kanjirakat, Anoop
PY - 2010
Y1 - 2010
N2 - With the increasing concern of CO2 emissions and climate change, efforts have grown to include solar technologies in chemical processes to manufacture products that can be used both as a commodity and as a fuel, such as hydrogen. This study focuses on a technique, referred to as "solar cracking" of natural gas for the co-production of hydrogen and carbon as byproduct with zero emission footprint via the following reaction: CH 4→C(s)+2H2(g). However, some portion of the incoming solar energy absorbed by the cavity greatly exceeds the surface absorption of the inner walls because of multiple internal reflections. Studies have shown that by seeding the reactor with micron-sized carbon particles, methane conversion improves drastically due to the radiation absorbed by the carbon particles and additional nucleation sites formed by carbon particles for heterogeneous decomposition reaction. This can maintain more heat at the core and can reduce the carbon deposits on the reactor walls. Present study numerically tries to investigate the above fact by tracking carbon particles in a Lagrangian frame-work. Initially, the numerical model is validated qualitatively by comparing the particle deposition on reactor window with the experimental observations. Effect of particle loading, particle emissivity, injection point location, and effect of using different window screening gases on a flow and temperature distribution inside a confined tornado flow reactor are studied. It is observed that the methane conversion substantially increases by particle seeding. The results of this research can be used in thermo-chemical reactor design.
AB - With the increasing concern of CO2 emissions and climate change, efforts have grown to include solar technologies in chemical processes to manufacture products that can be used both as a commodity and as a fuel, such as hydrogen. This study focuses on a technique, referred to as "solar cracking" of natural gas for the co-production of hydrogen and carbon as byproduct with zero emission footprint via the following reaction: CH 4→C(s)+2H2(g). However, some portion of the incoming solar energy absorbed by the cavity greatly exceeds the surface absorption of the inner walls because of multiple internal reflections. Studies have shown that by seeding the reactor with micron-sized carbon particles, methane conversion improves drastically due to the radiation absorbed by the carbon particles and additional nucleation sites formed by carbon particles for heterogeneous decomposition reaction. This can maintain more heat at the core and can reduce the carbon deposits on the reactor walls. Present study numerically tries to investigate the above fact by tracking carbon particles in a Lagrangian frame-work. Initially, the numerical model is validated qualitatively by comparing the particle deposition on reactor window with the experimental observations. Effect of particle loading, particle emissivity, injection point location, and effect of using different window screening gases on a flow and temperature distribution inside a confined tornado flow reactor are studied. It is observed that the methane conversion substantially increases by particle seeding. The results of this research can be used in thermo-chemical reactor design.
KW - Carbon seeding
KW - Computational flow dynamics
KW - Hydrogen
KW - Solar cracking
KW - Solar reactor
UR - http://www.scopus.com/inward/record.url?scp=84860306662&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84860306662&partnerID=8YFLogxK
U2 - 10.1115/ES2010-90326
DO - 10.1115/ES2010-90326
M3 - Conference contribution
AN - SCOPUS:84860306662
SN - 9780791843949
T3 - ASME 2010 4th International Conference on Energy Sustainability, ES 2010
SP - 143
EP - 152
BT - ASME 2010 4th International Conference on Energy Sustainability, ES 2010
T2 - ASME 2010 4th International Conference on Energy Sustainability, ES 2010
Y2 - 17 May 2010 through 22 May 2010
ER -