TY - JOUR
T1 - A Bayesian method for detecting pairwise associations in compositional data
AU - Schwager, Emma
AU - Mallick, Himel
AU - Ventz, Steffen
AU - Huttenhower, Curtis
N1 - Publisher Copyright:
© 2017 Schwager et al.
PY - 2017/11
Y1 - 2017/11
N2 - Compositional data consist of vectors of proportions normalized to a constant sum from a basis of unobserved counts. The sum constraint makes inference on correlations between unconstrained features challenging due to the information loss from normalization. However, such correlations are of long-standing interest in fields including ecology. We propose a novel Bayesian framework (BAnOCC: Bayesian Analysis of Compositional Covariance) to estimate a sparse precision matrix through a LASSO prior. The resulting posterior, generated by MCMC sampling, allows uncertainty quantification of any function of the precision matrix, including the correlation matrix. We also use a first-order Taylor expansion to approximate the transformation from the unobserved counts to the composition in order to investigate what characteristics of the unobserved counts can make the correlations more or less difficult to infer. On simulated datasets, we show that BAnOCC infers the true network as well as previous methods while offering the advantage of posterior inference. Larger and more realistic simulated datasets further showed that BAnOCC performs well as measured by type I and type II error rates. Finally, we apply BAnOCC to a microbial ecology dataset from the Human Microbiome Project, which in addition to reproducing established ecological results revealed unique, competition-based roles for Proteobacteria in multiple distinct habitats.
AB - Compositional data consist of vectors of proportions normalized to a constant sum from a basis of unobserved counts. The sum constraint makes inference on correlations between unconstrained features challenging due to the information loss from normalization. However, such correlations are of long-standing interest in fields including ecology. We propose a novel Bayesian framework (BAnOCC: Bayesian Analysis of Compositional Covariance) to estimate a sparse precision matrix through a LASSO prior. The resulting posterior, generated by MCMC sampling, allows uncertainty quantification of any function of the precision matrix, including the correlation matrix. We also use a first-order Taylor expansion to approximate the transformation from the unobserved counts to the composition in order to investigate what characteristics of the unobserved counts can make the correlations more or less difficult to infer. On simulated datasets, we show that BAnOCC infers the true network as well as previous methods while offering the advantage of posterior inference. Larger and more realistic simulated datasets further showed that BAnOCC performs well as measured by type I and type II error rates. Finally, we apply BAnOCC to a microbial ecology dataset from the Human Microbiome Project, which in addition to reproducing established ecological results revealed unique, competition-based roles for Proteobacteria in multiple distinct habitats.
UR - http://www.scopus.com/inward/record.url?scp=85036464214&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85036464214&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1005852
DO - 10.1371/journal.pcbi.1005852
M3 - Article
C2 - 29140991
AN - SCOPUS:85036464214
SN - 1553-734X
VL - 13
JO - PLoS computational biology
JF - PLoS computational biology
IS - 11
M1 - e1005852
ER -