A Bayesian level set method for geometric inverse problems

Marco A. Iglesias, Yulong Lu, Andrew M. Stuart

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

We introduce a level set based approach to Bayesian geometric inverse problems. In these problems the interface between different domains is the key unknown, and is realized as the level set of a function. This function itself becomes the object of the inference. Whilst the level set methodology has been widely used for the solution of geometric inverse problems, the Bayesian formulation that we develop here contains two significant advances: firstly it leads to a well-posed inverse problem in which the posterior distribution is Lipschitz with respect to the observed data, and may be used to not only estimate interface locations, but quantify uncertainty in them; and secondly it leads to computationally expedient algorithms in which the level set itself is updated implicitly via the MCMC methodology applied to the level set function - no explicit velocity field is required for the level set interface. Applications are numerous and include medical imaging, modelling of subsurface formations and the inverse source problem; our theory is illustrated with computational results involving the last two applications.

Original languageEnglish (US)
Pages (from-to)181-217
Number of pages37
JournalInterfaces and Free Boundaries
Volume18
Issue number2
DOIs
StatePublished - 2016
Externally publishedYes

Bibliographical note

Publisher Copyright:
© European Mathematical Society 2016.

Keywords

  • Bayesian level set method
  • Inverse problems
  • Markov chain Monte Carlo (MCMC)

Fingerprint

Dive into the research topics of 'A Bayesian level set method for geometric inverse problems'. Together they form a unique fingerprint.

Cite this