> ?> \pJava Excel API v2.6.10 Ba==h\:#8X@"1Arial1Arial1Arial1Arial  + ) , * `9FUnknown, RankNameURL1KArtery/vein classification of retinal blood vessels using feature selectionihttps://experts.umn.edu/en/publications/arteryveinclassificationofretinalbloodvesselsusingfeature2EAsynchronous discretetime signal processing with molecular reactionsihttps://experts.umn.edu/en/publications/asynchronousdiscretetimesignalprocessingwithmolecularreact3KAutomated denoising and segmentation of optical coherence tomography imagesihttps://experts.umn.edu/en/publications/automateddenoisingandsegmentationofopticalcoherencetomogra4ZAutomated detection of neovascularization for proliferative diabetic retinopathy screeningihttps://experts.umn.edu/en/publications/automateddetectionofneovascularizationforproliferativediabe5EBelief propagation decoding of polar codes using stochastic computingihttps://experts.umn.edu/en/publications/beliefpropagationdecodingofpolarcodesusingstochasticcompu6cBiomarkers for Adolescent MDD from Anatomical Connectivity and Network Topology Using Diffusion MRIihttps://experts.umn.edu/en/publications/biomarkersforadolescentmddfromanatomicalconnectivityandne7"Canonic realvalued FFT structuresJhttps://experts.umn.edu/en/publications/canonicrealvaluedfftstructures8Canonic realvalued radix2n FFT computationsUhttps://experts.umn.edu/en/publications/canonicrealvaluedradix2nfftcomputations9GClassification of obsessivecompulsive disorder from restingstate fMRIihttps://experts.umn.edu/en/publications/classificationofobsessivecompulsivedisorderfromrestingstat10cClassification of singletrial MEG during sentence processing for automated schizophrenia screeningihttps://experts.umn.edu/en/publications/classificationofsingletrialmegduringsentenceprocessingfor11bClassifying Treated vs. Untreated MDD Adolescents from Anatomical Connectivity using Nonlinear SVMihttps://experts.umn.edu/en/publications/classifyingtreatedvsuntreatedmddadolescentsfromanatomical12LComputing complex functions using factorization in unipolar stochastic logicihttps://experts.umn.edu/en/publications/computingcomplexfunctionsusingfactorizationinunipolarstoch133Computing polynomials by chemical reaction networks[https://experts.umn.edu/en/publications/computingpolynomialsbychemicalreactionnetworks14BComputing RBF kernel for SVM classification using stochastic logicihttps://experts.umn.edu/en/publications/computingrbfkernelforsvmclassificationusingstochasticlogi157Datacanonic real FFT flowgraphs for composite lengths_https://experts.umn.edu/en/publications/datacanonicrealfftflowgraphsforcompositelengths16&Digital logic with molecular reactionsNhttps://experts.umn.edu/en/publications/digitallogicwithmolecularreactions17HEffect of aging on linear and nonlinear MUX PUFs by statistical modelingihttps://experts.umn.edu/en/publications/effectofagingonlinearandnonlinearmuxpufsbystatisticalm187Effect of bitlevel correlation in stochastic computing_https://experts.umn.edu/en/publications/effectofbitlevelcorrelationinstochasticcomputing19?Estimating delay differences of arbiter PUFs using silicon dataghttps://experts.umn.edu/en/publications/estimatingdelaydifferencesofarbiterpufsusingsilicondata20WFaulttolerant ripplecarry binary adder using partial triple modular redundancy (PTMR)ihttps://experts.umn.edu/en/publications/faulttolerantripplecarrybinaryadderusingpartialtriplemod21LFunctional encryption of integrated circuits by keybased hybrid obfuscationihttps://experts.umn.edu/en/publications/functionalencryptionofintegratedcircuitsbykeybasedhybrid22JJoint brain connectivity estimation from diffusion and functional MRI dataihttps://experts.umn.edu/en/publications/jointbrainconnectivityestimationfromdiffusionandfunctional23CLattice FIR digital filter architectures using stochastic computingihttps://experts.umn.edu/en/publications/latticefirdigitalfilterarchitecturesusingstochasticcomputi24?Lowenergy architectures for Support Vec< tor Machine computationghttps://experts.umn.edu/en/publications/lowenergyarchitecturesforsupportvectormachinecomputation25~LowEnergy architectures of linear classifiers for IoT applications using incremental precision and multiLevel classificationihttps://experts.umn.edu/en/publications/lowenergyarchitecturesoflinearclassifiersforiotapplicatio263Machine learning classifiers using stochastic logic[https://experts.umn.edu/en/publications/machinelearningclassifiersusingstochasticlogic273Markov chain computations using molecular reactions[https://experts.umn.edu/en/publications/markovchaincomputationsusingmolecularreactions287Modebased obfuscation using controlflow modifications_https://experts.umn.edu/en/publications/modebasedobfuscationusingcontrolflowmodifications29OMolecular computation of complex Markov chains with selfloop state transitionsihttps://experts.umn.edu/en/publications/molecularcomputationofcomplexmarkovchainswithselfloopsta301Molecular MUXbased physical unclonable functionsYhttps://experts.umn.edu/en/publications/molecularmuxbasedphysicalunclonablefunctions31QOCT Fluid Segmentation using Graph Shortest Path and Convolutional Neural Networkihttps://experts.umn.edu/en/publications/octfluidsegmentationusinggraphshortestpathandconvolutiona32kPerformance comparison of AESGCMSIV and AESGCM algorithms for authenticated encryption on FPGA platformsihttps://experts.umn.edu/en/publications/performancecomparisonofaesgcmsivandaesgcmalgorithmsfor33NPermDNN: Efficient compressed DNN architecture with permuted diagonal matricesihttps://experts.umn.edu/en/publications/permdnnefficientcompresseddnnarchitecturewithpermuteddiago34VPredicting SoftResponse of MUX PUFs via Logistic Regression of Total Delay Differenceihttps://experts.umn.edu/en/publications/predictingsoftresponseofmuxpufsvialogisticregressionoft359Reducedlatency LLRbased SC list decoder for polar codesahttps://experts.umn.edu/en/publications/reducedlatencyllrbasedsclistdecoderforpolarcodes36MSchizophrenia classification with singletrial MEG during language processingihttps://experts.umn.edu/en/publications/schizophreniaclassificationwithsingletrialmegduringlanguag37aSeizure detection using regression tree based feature selection and polynomial SVM classificationihttps://experts.umn.edu/en/publications/seizuredetectionusingregressiontreebasedfeatureselectiona38=Seizure prediction using crosscorrelation and classificationehttps://experts.umn.edu/en/publications/seizurepredictionusingcrosscorrelationandclassification396Seizure prediction using polynomial SVM classification^https://experts.umn.edu/en/publications/seizurepredictionusingpolynomialsvmclassification40ZSeizure prediction with bipolar spectral power features using Adaboost and SVM classifiersihttps://experts.umn.edu/en/publications/seizurepredictionwithbipolarspectralpowerfeaturesusingada41;Serial and interleaved architectures for computing real FFTchttps://experts.umn.edu/en/publications/serialandinterleavedarchitecturesforcomputingrealfft42YSoft Response Generation and Thresholding Strategies for Linear and FeedForward MUX PUFsihttps://experts.umn.edu/en/publications/softresponsegenerationandthresholdingstrategiesforlineara43JSuccessive cancellation decoding of polar codes using stochastic computingihttps://experts.umn.edu/en/publications/successivecancellationdecodingofpolarcodesusingstochastic44FSuccessive cancellation list polar decoder using loglikelihood ratiosihttps://experts.umn.edu/en/publications/successivecancellationlistpolardecoderusingloglikelihoodr459Classification Using Hyperdimensional Computing: A Review`https://experts.umn.edu/en/publications/classificationusinghyperdimensionalcomputingareview46>Comments on Lowenergy CSMT carry generators and binary addersfhttps://experts.umn.edu/en/publications/commentsonlowenergycsmtcarrygeneratorsandbinaryadders:".vvP n
Hx 2
b
nJz2r2b6V2bdJz 4"d"#$%
&'k(x+)8]*j++,  .
10>01
73D345678Y9f:,;+<8<>#?0?cApAB
/FqTZ
dMbP?_*+%" ,,??U}}}s}}}/
!
"
#
$
%
&
'
(
)
*
+
,

.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_
`
D
lTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT !"#$%&'()*+,.
a
b
c
!d
!e
!f
!
!
!
"g
"h
"i
"
"
"
#j
#k
#l
#
#
#
$m
$n
$o
$
$
$
%p
%q
%r
%
%
%
&s
&t
&u
&
&
&
'v
'w
'x
'
'
'
(y
(z
({
(
(
(
)
)}
)~
)
)
)
*
*
*
*
*
*
+
+
+
+
+
+
,
,
,
,
,
,






.
.
.
.
.
."TTTTTTTTTTTTTT>@<d
!"#$%&'()*+,/012345789:;<=Root EntryWorkbook\SummaryInformation(.DocumentSummaryInformation86