Abstract
Purpose Use of external coils with internal detectors or conductors is challenging at 7 Tesla (T) due to radiofrequency (RF) field (B1) penetration, B1-inhomogeneity, mutual coupling, and potential local RF heating. The present study tests whether the near-quadratic gains in signal-to-noise ratio and field-of-view with field-strength previously reported for internal loopless antennae at 7T can suffice to perform MRI with an interventional transmit/receive antenna without using any external coils. Methods External coils were replaced by semi-rigid or biocompatible transmit/receive loopless antennae requiring only a few Watts of peak RF power. Slice selection was provided by spatially selective B1-insensitive composite RF pulses that compensate for the antenna's intrinsically nonuniform B1-field. Power was adjusted to maintain local temperature rise ≤1°C. Fruit, intravascular MRI of diseased human vessels in vitro, and MRI of rabbit aorta in vivo are demonstrated. Results Scout MRI with the transmit/receive antennae yielded a ≤10 cm cylindrical field-of-view, enabling subsequent targeted localization at ∼100 μm resolution in 10-50 s and/or 50 μm MRI in ∼2 min in vitro, and 100-300 μm MRI of the rabbit aorta in vivo. Conclusion A simple, low-power, one-device approach to interventional MRI at 7T offers the potential of truly high-resolution MRI, while avoiding issues with external coil excitation and interactions at 7T.
Original language | English (US) |
---|---|
Pages (from-to) | 220-226 |
Number of pages | 7 |
Journal | Magnetic resonance in medicine |
Volume | 72 |
Issue number | 1 |
DOIs | |
State | Published - Jul 2014 |
Keywords
- high-resolution MRI
- in vivo interventional MRI
- intravascular MRI
- transmit/receive coils
- vessel wall imaging
Center for Magnetic Resonance Research (CMRR) tags
- MRE