TY - JOUR
T1 - 6-Substituted and 5,6-disubstituted derivatives of uridine
T2 - Stereoselective synthesis, interaction with uridine phosphorylase, and in vitro antitumor activity
AU - Felczak, Krzysztof
AU - Drabikowska, Alicja K.
AU - Vilpo, Juhani A.
AU - Kulikowski, Tadeusz
AU - Shugar, David
PY - 1996/4/12
Y1 - 1996/4/12
N2 - Stereoselective procedures are described for the synthesis of 6- alkyluridines by Lewis acid-catalyzed condensation of (a) trimethylsilylated 6-alkyl-4-alkylthiouracils with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D- ribofuranose (ABR) and (b) trimethylsilylated 6-alkyl-3-benzyluracils with ABR. The 4-methylthio group was subsequently removed with the use of 1 N trifluoroacetic acid and the 3-benzyl group by a new modified procedure with the use of the complex BBr3-THF. Furthermore, 6-(hydroxymethyl)uridine (39) and 5-fluoro-6-(hydroxymethyl)uridine (40) were obtained by sequential oxidation with SeO2 and reduction with tetrabutylammonium borohydride of the 6-methyl group of 6-methyluridine (5) and 5-fluoro-6-methyluridine (35), and their corresponding 6-fluoromethyl congeners 41 and 42 were obtained by DAST treatment of 39 and 40, respectively. For all the foregoing nucleosides in the fixed syn conformation about the glycosyl bond, 1H NMR spectroscopy further demonstrated that the pentose rings exist predominantly in the conformation N (3'-endo). Most of the nucleosides were weak substrates of Escherichia coli pyrimidine nucleoside phosphorylase. Enhanced susceptibility to phosphorolysis was exhibited by two of them, 39 and 41, with 6-CH2OH and 6-CH2F substituents capable of formation of an additional hydrogen bond with the enzyme. The 5-fluoro-6-substituted uridines were the poorest substrates. Cytotoxicities of the nucleosides were examined vs the human tumor cell lines MOLT-3, U-937, K-562, and IM-9, as well as PHA-stimulated human lymphocytes. Two of the analogues, 5-fluoro-6-(fluoromethyl)uridine (42) and 5-fluoro-6- (hydroxymethyl)uridine (40), exhibited cytotoxicities comparable to that of 5-fluorouracil.
AB - Stereoselective procedures are described for the synthesis of 6- alkyluridines by Lewis acid-catalyzed condensation of (a) trimethylsilylated 6-alkyl-4-alkylthiouracils with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D- ribofuranose (ABR) and (b) trimethylsilylated 6-alkyl-3-benzyluracils with ABR. The 4-methylthio group was subsequently removed with the use of 1 N trifluoroacetic acid and the 3-benzyl group by a new modified procedure with the use of the complex BBr3-THF. Furthermore, 6-(hydroxymethyl)uridine (39) and 5-fluoro-6-(hydroxymethyl)uridine (40) were obtained by sequential oxidation with SeO2 and reduction with tetrabutylammonium borohydride of the 6-methyl group of 6-methyluridine (5) and 5-fluoro-6-methyluridine (35), and their corresponding 6-fluoromethyl congeners 41 and 42 were obtained by DAST treatment of 39 and 40, respectively. For all the foregoing nucleosides in the fixed syn conformation about the glycosyl bond, 1H NMR spectroscopy further demonstrated that the pentose rings exist predominantly in the conformation N (3'-endo). Most of the nucleosides were weak substrates of Escherichia coli pyrimidine nucleoside phosphorylase. Enhanced susceptibility to phosphorolysis was exhibited by two of them, 39 and 41, with 6-CH2OH and 6-CH2F substituents capable of formation of an additional hydrogen bond with the enzyme. The 5-fluoro-6-substituted uridines were the poorest substrates. Cytotoxicities of the nucleosides were examined vs the human tumor cell lines MOLT-3, U-937, K-562, and IM-9, as well as PHA-stimulated human lymphocytes. Two of the analogues, 5-fluoro-6-(fluoromethyl)uridine (42) and 5-fluoro-6- (hydroxymethyl)uridine (40), exhibited cytotoxicities comparable to that of 5-fluorouracil.
UR - http://www.scopus.com/inward/record.url?scp=0029913810&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029913810&partnerID=8YFLogxK
U2 - 10.1021/jm950675q
DO - 10.1021/jm950675q
M3 - Article
C2 - 8648611
AN - SCOPUS:0029913810
SN - 0022-2623
VL - 39
SP - 1720
EP - 1728
JO - Journal of medicinal chemistry
JF - Journal of medicinal chemistry
IS - 8
ER -