Abstract
Three-dimensional (3D) bioprinting strategies use computer-aided processes to enable automated simultaneous spatial patterning of cells and/or biomaterials. These technologies are suitable for a broad range of biomedical applications owing to their capability to produce structurally sophisticated and functionally relevant tissue constructs. Extrusion-based 3D bioprinting strategies were among the first modalities developed and are now arguably the most widely used for producing 3D tissue constructs. These technologies have rapidly evolved over the past two decades, providing a powerful tool set for the biofabrication of tissues that can facilitate translational efforts in the field. In this Primer, we describe the methodology of 3D extrusion bioprinting, focusing on the selection of hardware, software and bioinks. We expand upon recent advances in 3D extrusion bioprinting by illustrating the key variations that promote its biofabrication abilities. Finally, we provide an outlook on possible future refinements of the technology.
Original language | English (US) |
---|---|
Article number | 75 |
Journal | Nature Reviews Methods Primers |
Volume | 1 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2021 |
Bibliographical note
Funding Information:Y.S.Z. gratefully acknowledges funding from the NIH (R00CA201603, R21EB025270, R21EB026175, R21EB030257, R01EB028143 and R01HL153857), the National Science Foundation (CBET-EBMS-1936105) and the Brigham Research Institute. J.M. acknowledges support of the Gravitation Program ‘Materials Driven Regeneration’, funded by the Netherlands Organization for Scientific Research (024.003.013; J.M.).
Publisher Copyright:
© 2021, Springer Nature Limited.