3D bioprinting directly onto moving human anatomy

John J. O'Neill, Reed A. Johnson, Rodney L. Dockter, Timothy M. Kowalewski

Research output: Chapter in Book/Report/Conference proceedingConference contribution

17 Scopus citations

Abstract

This paper establishes the feasibility of robotically 3D printing biomaterials such as alginate hydrogels onto moving human anatomy and a stationary plane. The alginate hydrogels used are in-vivo compatible and a proven biomaterial for tissue scaffolds. We developed a control scheme for precision material deposition via piezo microjetting while tracking in real-time to continuously sense anatomy location and deposits material in a predefined trajectory derived from two pre-selected target geometries. We show that multilayer 3D structures can be created on a moving human hand with 1.6 mm average error and 87.8 % overall accuracy.

Original languageEnglish (US)
Title of host publicationIROS 2017 - IEEE/RSJ International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages934-940
Number of pages7
ISBN (Electronic)9781538626825
DOIs
StatePublished - Dec 13 2017
Event2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017 - Vancouver, Canada
Duration: Sep 24 2017Sep 28 2017

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2017-September
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Other

Other2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017
Country/TerritoryCanada
CityVancouver
Period9/24/179/28/17

Bibliographical note

Publisher Copyright:
© 2017 IEEE.

Fingerprint

Dive into the research topics of '3D bioprinting directly onto moving human anatomy'. Together they form a unique fingerprint.

Cite this