2-Arachidonoylglycerol stimulates activator protein-1-dependent transcriptional activity and enhances epidermal growth factor-induced cell transformation in JB6 P+ cells

Qing Zhao, Zhiwei He, Nanyue Chen, Yong Yeon Cho, Feng Zhu, Chengrong Lu, Wei-Ya Ma, Ann M. Bode, Zigang Dong

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid, and it plays a critical role in cannabinoid receptor-mediated cell signaling. Although 2-AG was shown to induce ERK activation via the cannabinoid receptor 1 (CB1), only a nonspecific CB receptor agonist and antagonist was used in those studies. Whether cannabinoid receptor 2 (CB2) is involved in 2-AG-induced ERK activation is still unclear. Moreover, whether 2-AG is involved in mediation of AP-1 activity and cell transformation is also not known. In the present study, we show that 2-AG stimulates AP-1-dependent transcriptional activity and enhances epidermal growth factor-induced cell transformation in mouse epidermal JB6 P+ C141 cells. Using JB6 P+ C141 cells, stably transfected with an AP-1 luciferase reporter, we found that 10 μM 2-AG induced up to a 3-fold stimulation of AP-1 transcriptional activity. The AP-1 stimulation appeared to be mediated by ERK but not JNK or p38 kinase. PD98059, a specific inhibitor of MEK1, almost completely blocked 2-AG-induced ERK phosphorylation and AP-1 activation. Using CB1/2-/- murine embryonic fibroblasts, we present the first direct evidence that both cannabinoid receptors 1 and 2 (CB1/2) are involved in 2-AG-induced ERK activation. 2-AG could not stimulate ERK phosphorylation or Fyn kinase activity in dominant negative Fyn. In addition, the Fyn inhibitor PP2 blocked 2-AG-induced Fyn kinase activity and ERK phosphorylation and activity. Small interfering RNA Fyn also suppressed 2-AG-induced ERK phosphorylation. Interestingly, 2-AG enhanced epidermal growth factor-induced AP-1 DNA binding and cell transformation. Taken together, our data provide direct evidence suggesting that 2-AG may have a novel role in cell transformation and carcinogenesis in a signaling pathway involving CB1/2 and activation of Fyn, ERKs, and AP-1.

Original languageEnglish (US)
Pages (from-to)26735-26742
Number of pages8
JournalJournal of Biological Chemistry
Volume280
Issue number29
DOIs
StatePublished - Jul 22 2005

Fingerprint

Dive into the research topics of '2-Arachidonoylglycerol stimulates activator protein-1-dependent transcriptional activity and enhances epidermal growth factor-induced cell transformation in JB6 P+ cells'. Together they form a unique fingerprint.

Cite this