2-Amino-9H-pyrido[2,3-b]indole (AαC) adducts and thiol oxidation of serum albumin as potential biomarkers of tobacco smoke

Khyatiben V. Pathak, Medjda Bellamri, Yi Wang, Sophie Langouët, Robert J. Turesky

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

2-Amino-9H-pyrido[2,3-b]indole (AαC) is a carcinogenic heterocyclic aromatic amine formed during the combustion of tobacco. AαC undergoes bioactivation to form electrophilic N-oxidized metabolites that react with DNA to form adducts, which can lead to mutations. Many genotoxicants and toxic electrophiles react with human serum albumin (albumin); however, the chemistry of reactivity of AαC with proteins has not been studied. The genotoxic metabolites, 2-hydroxyamino-9H-pyrido[2,3-b]indole (HONH-AαC), 2-nitroso-9H-pyrido[2, 3-b]indole (NO-AαC), N-acetyloxy-2-amino-9H-pyrido[2,3-b]indole (N-acetoxy-AαC), and their [13C6]AαC-labeled homologues were reacted with albumin. Sites of adduction of AαC to albumin were identified by data-dependent scanning and targeted bottom-up proteomics approaches employing ion trap and Orbitrap MS. AαC-albumin adducts were formed at Cys34, Tyr140, and Tyr150 residues when albumin was reacted with HONH-AαC or NO-AαC. Sulfenamide, sulfinamide, and sulfonamide adduct formation occurred at Cys34 (AαC-Cys34). N-Acetoxy-AαC also formed an adduct at Tyr332. Albumin-AαC adducts were characterized in human plasma treated with N-oxidized metabolites of AαC and human hepatocytes exposed to AαC. High levels of N-(deoxyguanosin-8-yl)-AαC (dG-C8-AαC) DNA adducts were formed in hepatocytes. The Cys34 was the sole amino acid of albumin to form adducts with AαC. Albumin also served as an antioxidant and scavenged reactive oxygen species generated by metabolites of AαC in hepatocytes; there was a strong decrease in reduced Cys34, whereas the levels of Cys34 sulfinic acid (Cys-SO2H), Cys34-sulfonic acid (Cys-SO3H), and Met329 sulfoxide were greatly increased. Cys34 adduction products and Cys-SO2H, Cys-SO3H, and Met329 sulfoxide may be potential biomarkers to assess exposure and oxidative stress associated with AαC and other arylamine toxicants present in tobacco smoke.

Original languageEnglish (US)
Pages (from-to)16304-16318
Number of pages15
JournalJournal of Biological Chemistry
Volume290
Issue number26
DOIs
StatePublished - Jun 26 2015

Bibliographical note

Publisher Copyright:
© 2015 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.

Fingerprint

Dive into the research topics of '2-Amino-9H-pyrido[2,3-b]indole (AαC) adducts and thiol oxidation of serum albumin as potential biomarkers of tobacco smoke'. Together they form a unique fingerprint.

Cite this