Datasets
- 6 results
Search results
-
Supporting Data for "From Order to Disorder: Computational Design of Triblock Amphiphiles with 1 nm Domains"
Shen, Z., Chen, J., Vernadskaia, V., Ertem, S. P., Mahanthappa, M., Hillmyer, M. A., Reineke, T. M., Lodge, T. P. & Siepmann, I., Data Repository for the University of Minnesota, May 11 2020
DOI: 10.13020/7zcr-w347, https://hdl.handle.net/11299/214077 and one more link, http://hdl.handle.net/11299/214077 (show fewer)
Dataset
-
Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning
Sun, Y., DeJaco, R. F., Li, Z., Tang, D., Glante, S., Sholl, D. S., Colina, C. M., Snurr, R. Q., Thommes, M., Hartmann, M. & Siepmann, I., Data Repository for the University of Minnesota, May 19 2021
https://conservancy.umn.edu/handle/11299/220168
Dataset
-
Supporting Data for "Development of a PointNet for Detecting Morphologies of Self-Assembled Block Oligomers in Atomistic Simulations"
Siepmann, I., Data Repository for the University of Minnesota, Aug 30 2021
DOI: 10.13020/twtv-vd66, https://hdl.handle.net/11299/223248
Dataset
-
Supporting Data for "Effects of Electrolytes on Thermodynamics and Structure of Oligo(ethylene oxide)/Salt Solutions and Liquid–Liquid Equilibria of a Squalane/Tetraethylene Glycol Dimethyl Ether Blend"
Shen, Z., Chen, Q. P., Lodge, T. & Siepmann, I., Data Repository for the University of Minnesota, 2021
DOI: 10.13020/gpac-zb41, https://doi.org/10.13020/gpac-zb41
Dataset
-
Two-dimensional Energy Histograms as Features for Machine Learning to Predict Adsorption in Diverse Nanoporous Materials
Shi, K., Li, Z., Anstine, D., Tang, D., Colina, C., Sholl, D., Siepmann, I. & Snurr, R., ZENODO, Oct 19 2022
DOI: 10.5281/zenodo.5481697, https://zenodo.org/record/5481697
Dataset
-
Computation-Ready Experimental Metal-Organic Framework (CoRE MOF) 2019 Dataset
Chung, Y. G., Haldoupis, E., Bucior, B. J., Haranczyk, M., Lee, S., Vogiatzis, K. D., Ling, S., Milisavljevic, M., Zhang, H., Camp, J. S., Slater, B., Siepmann, J. I., Sholl, D. S. & Snurr, R. Q., ZENODO, Mar 2 2023
DOI: 10.5281/zenodo.7691378, https://zenodo.org/record/7691378
Dataset